If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.8x^2+32x-960=0
a = 0.8; b = 32; c = -960;
Δ = b2-4ac
Δ = 322-4·0.8·(-960)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-64}{2*0.8}=\frac{-96}{1.6} =-60 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+64}{2*0.8}=\frac{32}{1.6} =20 $
| 0.17x=1 | | 5^(2x-1)=(1/25) | | 2k×k=0 | | 3.14*x^2=37 | | J(x)=2x+5 | | 3-5z=11-2z | | 9m-7=3m+41 | | (56+)t7=9 | | 3/y+5=2/y+1 | | 2x²+10x+10,5=0 | | 2x³+-1x²+-25x+30=0 | | f/5-6=18 | | -2x+38=7x+32 | | 3(2x+1)=2(1-5)+6x+11 | | 4n^2-55=-9n | | 4(2x+2)=5x-10 | | -x+13=4(4x-1) | | 3(t-7)-5t=15 | | x-16=2(x-1)-3 | | 3(t-7)=5t=15 | | x-24=2(3x+4)-2 | | x=5-5*5+5 | | 2.x2-4x+2=0 | | 9x2+4x+5=0 | | 4(2x-28)=144 | | 5x-10=4x-3x | | -4a-23-9a=-53 | | 4(q+43)=-8(-q-15) | | (x)-128/3=0 | | 3x^-6x+5=0 | | 1/5=3.3y | | 3.5(2n-8)=14 |